RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June), 2012 Mid-Semester Examination, March 2012

: 19/03/2012 Date

CHEMISTRY (Honours)

Time : 11 am – 1 pm Paper : II

Full Marks : 50

[Use separate Answer Books for each group]

<u>Group – A</u>

(Answer any two from the following)

1.	a)	Carry out the following conversion :	[4]
		$(R) - 2 - butanol \longrightarrow (s) - 2 - butanol$	
	b)	Explain the following observation :	[3]
		(R) – 2 – chlorooctane when treated with 80% acetone / 20% water it gives 83% (s) – 2 – octanol and 17% (R) – 2 – octanol whereas (R) – α – phenylethyl chloride by the similar treatment gives 51%	
		(s) – α – phenylethanol and 49% (R) – α – phenylethanol	
	c)	Cite an example of S_{N^2} reaction which is attended by racemisation	[1]
2.	Co	mplete the following reactions and write down mechanism in each case :	2×4]
	a)	cis – 1, 2 – dimiethylcyclohexene $\frac{H_2}{RhCl(PPh_2)_2, 25^\circ, 1 \text{ atm}}$	
	b)	$F_3C - CH = CH_2 + HCl \longrightarrow$	
	c)	$MeO - CH = CH_2 + HCl(aq) \longrightarrow$	
	d)	$\operatorname{cis} - \operatorname{But} - 2 - \operatorname{ene} \xrightarrow{\operatorname{Br}_2 / \operatorname{CCl}_4} $	
3.	a)	Predict which reaction in the following pair has the greater entropy of activation $Me_2S + MeI \longrightarrow Me_3S^+ + I^-$	[2]
		Or, $SH^- + MeI \longrightarrow MeSH + \Gamma$	
	b)	Account for the relative K_{eqm} values for the following two reactions :	[2]
		i) $H_3CCOCH_3 + 2EtOH \rightleftharpoons (CH_3)_2C(OEt)_2 + H_2O$	
		ii) $Me_2CO + HO(CH_2)_2OH \Longrightarrow Me_2C < O O O O O O O O O O O O O O O O O O $	
	c)	Write the IUPAC name of the following compounds :	
		$\sim^{0} \neq^{0}$ OH	

d) 2, 6 - di - t - butylpyridine is a better scavanger than pyridine itself — Explain

[2]

<u>Group – B</u>

(Answer any two from the following)

4.	a)	Name the Principal ore of Beryllium with composition. How Beryllium is extracted from that ore :		
		Give chemical reactions for that extraction.	1+3]	
	b)	Explain why Group IA hydroxides are much more corrosive than that of Group IIA hydroxides.	[2]	
	c)	Write notes on Zintil salt.	[2]	
	d)	Write with example the existence of the sodide ion.	[1]	
5.	a)	Draw the complexes formed by Li^+ , Na^+ , and K^+ with acetyl acetone and with salicaldehyde.	[3]	
	b)	Write down the name of an important occurrence of lithium with its composition. How can you		
		obtain extra pure lithium from that occurrence. [1+2]	
	c)	State the basis of radius ratio rule for ionic compounds.	[1]	
	d)	Arrange (increasing order) and explain the solubility of LiClO ₄ , NaClO ₄ and KClO ₄ in water.	[2]	
6.	a)	Discuss the structure of XeF ₂ .	[2]	
	b)	Draw the important resonance structure for NO ₂ showing the formal charges on each atom and		
		indicate the relative importance of the various structures.	[2]	
	c)	$CH_2 - Br$		
		H_3C		
		(a) (a)		

In the cyclic bromo phosphate ester (a) nearly 40% 's' character is involved in the σ bond to the exocyclic oxygen. Explain the fact with Bent's rule and comment. [3]

d) What do you mean by Limiting radius ratio? Deduce the Limiting radius ratio for a body centered cubic Lattice.
[2]

<u>Group – C</u>

Br

7. Answer **any two** :

- a) i) Starting from Clausius inequality prove that for a spontaneous process at constant S and U, $\Delta E < 0$. [2]
 - ii) Starting from the expression of combined first and second law derive the thermodynamic equation of state (in terms of internal energy). [2]
- b) i) Any spontaneous endothermal process must always be associated with an increase of entropy. Explain. [2]
 - ii) 3 mole of an ideal gas (monoatomic) is expanded adiabatically from 27°C, 1 atm to 2 atm. Compute the corresponding entropy change. [2]
- c) i) Starting from the definition of G show that for any liquid $\overline{G} \overline{G}_0 = \overline{V}(p p_0)$ at const. temperature where G_0 is the free energy/mole at $p = p_0$. [2]
 - ii) Starting from Clausius inequality show that the entropy of the universe increases with time. [2]

8. Answer **any two** :

- a) i) For the reaction $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$, the rate can be expressed in three ways. Write the rate expressions. [2]
 - ii) The decomposition of A to produce B can be written as $A \rightarrow B$. When the initial concentration of A is 0.012 M, the rate is 0.0018M min⁻¹ and when the initial concentration of A is 0.024 M, the rate is 0.0036M min⁻¹. Write the rate law for the reaction. [2]
- b) i) The kinetics of acid-catalysed hydrolysis of ethyl acetate can be observed as the first order reaction with respect to the ester only. Explain. If it is a single step reaction, what is its molecularity?

ii) Use the following data for the reaction $SO_2 + Cl_2 \rightarrow SO_2Cl_2$, find out the partial orders. [2]

[SO ₂]/(M)	$[Cl_2]/(M)$	Initial rate/(Ms ⁻¹)
2.3×10^{-4}	3.1×10 ⁻⁵	5.25×10^{-4}
4.6×10 ⁻⁴	6.2×10 ⁻⁵	4.20×10^{-3}
9.2×10 ⁻⁴	6.2×10^{-5}	1.70×10^{-2}

- c) i) If the half-life for the reaction $C_2H_5Cl \rightarrow C_2H_4 + HCl$ is the same when the initial concentration of C_2H_5Cl is 0.0050 M and 0.0078 M, what is the rate law for this reaction? Comment on the dimension of its rate constant. [2]
 - ii) A hypothetical reaction goes as A → P, A → Q and A → R, simultaneously with 1st order kinetics. What will be the amount of P, Q and R after 't' time? Which one will be the kinetically controlled product? [2]

80參Q